CORRECTIONS ANGLES

Exercice 2 page 274

a. La somme des mesures d'angles d'un triangle est égale à 180°

donc :
$$69^{\circ} + 33^{\circ} = 102^{\circ}$$
 et $180^{\circ} - 102^{\circ} = 78^{\circ}$

La mesure manquante dans le triangle est 78°.

b.
$$45^{\circ} + 32^{\circ} = 77^{\circ}$$
 et $180^{\circ} - 77^{\circ} = 103^{\circ}$

La mesure manquante dans le triangle est 103°.

Exercice 8 page 274

On sait que le triangle rectangle possède un angle droit (90°) et ici, il possède aussi un angle de 27°.

Or, la somme des mesures d'angles d'un triangle est égale à 180°

donc :
$$mesure\ du\ 3\`eme\ angle = 180° - (90° + 27°)$$

= $180° - 117°$
= $63°$

CORRECTIONS ANGLES

Exercice 11 page 275

• CALCUL de \widehat{BDA}

Dans le triangle ABD, la somme des mesures d'angle est égale à 180°

donc
$$\widehat{BDA} = 180^{\circ} - (56^{\circ} + 67^{\circ})$$

$$\widehat{BDA} = 180^{\circ} - 123^{\circ}$$

$$\widehat{BDA} = 57^{\circ}$$

• CALCUL de \widehat{ADC}

Les points B, D et C sont alignés, ils forment donc un angle plat (180°)

donc
$$\widehat{ADC} = 180^{\circ} - \widehat{BDA}$$

$$\widehat{ADC} = 180^{\circ} - 57^{\circ}$$

$$\widehat{ADC} = 123^{\circ}$$

• CALCUL de DAC

Dans le triangle ADC, la somme des mesures d'angle est égale à 180°

donc
$$\widehat{DAC} = 180^{\circ} - (123^{\circ} + 22^{\circ})$$

$$\widehat{DAC} = 180^{\circ} - 145^{\circ}$$

$$\widehat{DAC} = 35^{\circ}$$

CORRECTIONS ANGLES

Exercice 9 page 277

1)

• Triangle ABC :

Comme le triangle ABC est isocèle en C, ses angles à la base sont de même mesure. Ainsi, $\widehat{CBA} = \widehat{CAB} = 33^{\circ}$

De plus, la somme des mesures d'angle d'un triangle est égale à 180°

donc
$$\widehat{BCA} = 180^{\circ} - 2 \times 33^{\circ}$$

 $\widehat{BCA} = 180^{\circ} - 66^{\circ}$

$$\widehat{BCA} = 114^{\circ}$$

• Triangle ACD:

Les points B, C et D sont alignés, ils forment donc un angle plat (180°)

$$donc \widehat{ACD} = 180^{\circ} - \widehat{BCA}$$

$$\widehat{ACD} = 180^{\circ} - 114^{\circ}$$

$$\widehat{ACD} = 66^{\circ}$$

Comme le triangle ACD est isocèle en D, ses angles à la base sont de même mesure. Ainsi, $\widehat{ACD} = \widehat{CAD} = 66^{\circ}$

De plus, la somme des mesures d'angle d'un triangle est égale à 180°

donc
$$\widehat{ADC} = 180^{\circ} - 2 \times 66^{\circ}$$

$$\widehat{ADC} = 180^{\circ} - 132^{\circ}$$

$$\widehat{ADC} = 48^{\circ}$$

• Triangle CDE:

Dans le triangle CDE, la somme des mesures d'angle est égale à 180°

donc
$$\widehat{CED} = 180^{\circ} - (48^{\circ} + 66^{\circ})$$

 $\widehat{DAC} = 180^{\circ} - 114^{\circ}$
 $\widehat{DAC} = 66^{\circ}$

2)

a.
$$\widehat{BAD} = \widehat{BAC} + \widehat{CAD} = 33^{\circ} + 66^{\circ} = 99^{\circ}$$

Les trois angles du triangle BAD mesurent 33°, 48° et 99°.

Il n'y a donc pas d'angle droit. Le triangle BAD n'est pas rectangle.

- b. Les trois angles du triangle CDE mesurent 48°, 66° et 66°.Il n'y a donc pas d'angle droit. Le triangle CDE n'est pas rectangle.
- c. On sait qu'un triangle équilatéral a tous ses angles qui mesurent 60° car $3 \times 60^{\circ} = 180^{\circ}$.

Dans le triangle CDE, les angles mesurent 48°, 66° et 66°.

Il ne peut donc pas être équilatéral.

Par contre c'est un triangle isocèle car il a deux angles égaux.